Determining Appropriate Numbers and Times of Daily Measurements Using GreenFeed System to Estimate Ruminal Methane Emission of Meat Goats

Author:

Tadesse Dereje12ORCID,Puchala Ryszard13,Yirga Hirut14,Patra Amlan Kumar1ORCID,Gipson Terry Allen1ORCID,Min Byeng Ryel5ORCID,Goetsch Arthur Louis1ORCID

Affiliation:

1. American Institute for Goat Research, Langston University, Langston, OK 73050, USA

2. Department of Animal Sciences, Debre Berhan University, Debre Berhan P.O. Box 445, Ethiopia

3. Military Institute of Hygiene and Epidemiology, Kozielska 4, 00-163 Warsaw, Poland

4. Department of Animal and Range Sciences, Haramaya University, Dire Dawa P.O. Box 138, Ethiopia

5. Department of Agricultural and Environmental Sciences, Tuskegee University, Tuskegee, AL 36088, USA

Abstract

The study was conducted to determine appropriate numbers and times of daily gas measurements to estimate total daily methane (CH4) emission of meat goats using a GreenFeed system (GFS). A replicated 4 (four measurement protocols) × 4 (four periods) Latin square design was employed with 16 Boer wethers in a confinement pen setting. Measurement protocols entailed three (G-3T; 0600–0700, 1400–1500, and 2200–2300 h), four (G-4T; 0700–0800, 1300–1400, 1900–2000, and 0100–0200 h), and six (G-6T; 0800–0900, 1200–1300, 1600–1700, 2000–2100, 0000–0100, and 0400–0500 h) times for daily measurement periods in GFS. The fourth protocol was continuous measurement over 24 h with animals in an open-circuit respiration calorimetry system (CS). Oat hay was given in individual feeders, and a small predetermined quantity of a pelleted concentrate supplement (bait) was dispensed by the GFS or manually offered for the CS. Overall, total dry matter (DM) intake (614, 625, 635, and 577 g/day for CS, G-3T, G-4T, and G-6T, respectively; SEM = 13.9) and digestible DM intake (359, 368, 374, and 320 CS, G-3T, G-4T, and G-6T, respectively; SEM = 15.9) were lower for CS than for G-3T, G-4T, and G-6T (p < 0.05), but these variables were not different among the GFS protocols. There was a significant (p < 0.001) effect of measurement protocol on CH4 emission in g/day (11.1, 25.6, 27.3, and 26.7 for CS, G-3T, G-4T, and G-6T, respectively; SEM = 1.11), g/kg DM intake (19.3, 46.4, 43.9, and 42.4 for CS, G-3T, G-4T, and G-6T, respectively; SEM = 2.03), and g/kg body weight (0.49, 1.11, 1.18, and 1.16 for CS, G-3T, G-4T, and G-6T, respectively; SEM = 0.052), with values being much lower for CS than for G-3T, G-4T and G-6T. Conversely, CH4 emission was similar among the GFS protocols despite differences in the time and number of daily visits (2.03, 2.76, and 3.75 visits for G-3T, G-4T, and G-6T, respectively; SEM = 0.114; p < 0.001). Pearson correlation (r) analysis indicated a moderate to high (p < 0.05) correlation between CS and G-3T (r = 0.62 for CH4 in g/day and r = 0.59 for CH4 in g/kg BW), CS and G-4T (r = 0.67 for CH4 in g/day and r = 0.76 for CH4 in g/kg BW), and CS and G-6T (r = 0.70 for CH4 in g/day and r = 0.75 for CH4 in g/kg BW). However, the correlation coefficient for CH4 in g/kg DM intake was low between CS and G-3T (r = 0.11) and CS and G-6T (r = 0.31) but slightly greater between CS and G-4T (r = 0.47). In conclusion, the results suggest that CH4 emissions using GFS in a confinement setting were greater compared with the CS in goats, but CH4-emission estimation using the GFS correlated with the CH4 emission in the CS system with a stronger relationship for the four times of daily measurements.

Funder

USDA National Institute for Food and Agriculture

USDA/NRCS

Publisher

MDPI AG

Reference42 articles.

1. NCEI (2024, January 30). U.S. Billion-Dollar Weather and Climate Disasters. NOAA National Centers for Environmental Information (NCEI), Available online: https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.nodc:0209268.

2. WRI (2024, February 01). World Greenhouse Gas Emissions: 2019. World Resources Institute. Available online: https://www.wri.org/data/world-greenhouse-gas-emissions-2019.

3. IPCC (2014). Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC.

4. Methane Emissions from Cattle;Johnson;J. Anim. Sci.,1995

5. Predicting Enteric Methane Emission in Sheep Using Linear and Non-Linear Statistical Models from Dietary Variables;Patra;Anim. Prod. Sci.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3