Matching-to-Sample Task Training of a Killer Whale (Orcinus orca)

Author:

Santa Ayumu1,Kanda Koji2,Kako Tomoya2,Miyajima Momoko2,Adachi Ikuma1ORCID

Affiliation:

1. Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama 484-8506, Japan

2. Port of Nagoya Public Aquarium, Nagoya 455-0033, Japan

Abstract

Matching-to-sample tasks have been a useful method in visual cognitive studies on non-human animals. The use of touch panels in matching-to-sample tasks has contributed to cognitive studies on terrestrial animals; however, there has been a difficulty in using these devices underwater, which is one of the factors that has slowed the progress of visual studies on underwater animals. Cetaceans (e.g., dolphins and whales) are highly adapted to underwater environments, and further studies on their cognitive abilities are needed to advance our understanding of the interactions between environmental factors and the evolution of cognitive abilities. In this study, we aimed to develop a new experimental method in which a captive killer whale performed a matching-to-sample task using a monitor shown through an underwater window as if a touch panel were used. In order to confirm the usefulness of this method, one simple experiment on mirror image discrimination was conducted, and the pairs with mirror images were shown to be more difficult to identify than the pairs with other normal images. The advantages of using this method include (1) simplicity in the devices and stimuli used in the experiments, (2) appropriate and rigorous experimental control, (3) the possibility of increasing the number of individuals to be tested and interspecies comparisons, and (4) contributions to animal welfare. The use of this method solves some of the problems in previous visual cognitive studies on cetaceans, and it suggests the further possibility of future comparative cognitive studies. It is also expected to contribute to animal welfare in terms of cognitive enrichment, and it could help with the proposal of new exhibition methods in zoos and aquariums.

Funder

Japan Society for the Promotion of Science

Japan Wildlife Research Center

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3