Learning Rich Feature Representation and State Change Monitoring for Accurate Animal Target Tracking

Author:

Yin Kuan12,Feng Jiangfan1ORCID,Dong Shaokang1

Affiliation:

1. School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

2. College of Artificial Intelligence and Big Data, Chongqing College of Electronic Engineering, Chongqing 401331, China

Abstract

Animal tracking is crucial for understanding migration, habitat selection, and behavior patterns. However, challenges in video data acquisition and the unpredictability of animal movements have hindered progress in this field. To address these challenges, we present a novel animal tracking method based on correlation filters. Our approach integrates hand-crafted features, deep features, and temporal context information to learn a rich feature representation of the target animal, enabling effective monitoring and updating of its state. Specifically, we extract hand-crafted histogram of oriented gradient features and deep features from different layers of the animal, creating tailored fusion features that encapsulate both appearance and motion characteristics. By analyzing the response map, we select optimal fusion features based on the oscillation degree. When the target animal’s state changes significantly, we adaptively update the target model using temporal context information and robust feature data from the current frame. This updated model is then used for re-tracking, leading to improved results compared to recent mainstream algorithms, as demonstrated in extensive experiments conducted on our self-constructed animal datasets. By addressing specific challenges in animal tracking, our method offers a promising approach for more effective and accurate animal behavior research.

Funder

National Natural Science Foundation of China

Chongqing College of Electronic Engineering

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3