Developing Country-Specific Methane Emission Factors and Carbon Fluxes from Enteric Fermentation in South Korean Dairy Cattle Production

Author:

Ibidhi RidhaORCID,Kim Tae-Hoon,Bharanidharan RajaramanORCID,Lee Hyun-June,Lee Yoo-Kyung,Kim Na-YeonORCID,Kim Kyoung-Hoon

Abstract

Dairy cattle farming contributes significantly to greenhouse gas (GHG) emissions through methane (CH4) from enteric fermentation. To complement global efforts to mitigate climate change, there is a need for accurate estimations of GHG emissions using country-specific emission factors (EFs). The objective of this study was to develop national EFs for the estimation of CH4 emissions from enteric fermentation in South Korean dairy cattle. Information on dairy cattle herd characteristics, diet, and management practices specific to South Korean dairy cattle farming was obtained. Enteric CH4 EFs were estimated according to the 2019 refinement of the 2006 Intergovernmental Panel on Climate Change (IPCC) using the Tier 2 approach. Three animal subcategories were considered according to age: milking cows >2 years, 650 kg body weight (BW); heifers 1–2 years, 473 kg BW; and growing animals <1 year, 167 kg BW. The estimated enteric CH4 EFs for milking cows, heifers, and growing animals, were 139, 83 and 33 kg/head/year, respectively. Currently, the Republic of Korea adopts the Tier 1 default enteric CH4 EFs from the North America region for GHG inventory reporting. Compared with the generic Tier 1 default EF of 138 (kg CH4/head/year) proposed by the 2019 refinement to the 2006 IPCC guidelines for high-milking cows, our suggested value for milking cows was very similar (139 kg CH4 /head/year) and different to heifers and growing animals EFs. In addition, enteric CH4 EFs were strongly correlated with the feed digestibility, level of milk production, and CH4 conversion rate. The adoption of the newly developed EFs for dairy cattle in the next national GHG inventory would lead to a potential total GHG reduction from the South Korean dairy sector of 97,000 tons of carbon dioxide-equivalent per year (8%). The outcome of this study underscores the importance of obtaining country-specific EFs to estimate national enteric CH4 emissions, which can further support the assessment of mitigation actions.

Funder

National Institute of Animal Sciences, Rural Development Administration, Republic of Korea

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3