Abstract
Biological photonic nanoarchitectures are capable of rapidly and chemically selectively sensing volatile organic compounds due to changing color when exposed to such vapors. Here, stability and the vapor sensing properties of butterfly and moth wings were investigated by optical spectroscopy in the presence of water vapor. It was shown that repeated 30 s vapor exposures over 50 min did not change the resulting optical response signal in a time-dependent manner, and after 5-min exposures the sensor preserved its initial properties. Time-dependent response signals were shown to be species-specific, and by using five test substances they were also shown to be substance-specific. The latter was also evaluated using principal component analysis, which showed that the time-dependent optical responses can be used for real-time analysis of the vapors. It was demonstrated that the capability to detect volatile organic compounds was preserved in the presence of water vapor: high-intensity color change signals with short response times were measured in 25% relative humidity, similar to the one-component case; therefore, our results can contribute to the development of biological photonic nanoarchitecture-based vapor detectors for real-world applications, like living and working environments.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献