New n-p Junction Floating Gate to Enhance the Operation Performance of a Semiconductor Memory Device

Author:

Chen Yi-YuehORCID,Lin Su-Jien,Chang Shou-YiORCID

Abstract

To lower the charge leakage of a floating gate device and improve the operation performance of memory devices toward a smaller structure size and a higher component capability, two new types of floating gates composed of pn-type polysilicon or np-type polysilicon were developed in this study. Their microstructure and elemental compositions were investigated, and the sheet resistance, threshold voltages and erasing voltages were measured. The experimental results and charge simulation indicated that, by forming an n-p junction in the floating gate, the sheet resistance was increased, and the charge leakage was reduced because of the formation of a carrier depletion zone at the junction interface serving as an intrinsic potential barrier. Additionally, the threshold voltage and erasing voltage of the np-type floating gate were elevated, suggesting that the performance of the floating gate in the operation of memory devices can be effectively improved without the application of new materials or changes to the physical structure.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3