Shrinkage and Durability of Waste Brick and Recycled Concrete Aggregate Stabilized by Cement and Fly Ash

Author:

Ding Yongfa,Li Hongbo,Zhang Hubiao,Li Sheng,Zhang Xuanshuo,Hua Shudong,Zhao Jing,Tong Yufei

Abstract

To study the shrinkage and freeze-thaw durability of cement-fly-ash-stabilized brick and concrete reclaimed gravel mixture (CFRBCA), recycled gravel was used to replace 100% of the natural gravel in cement-and-fly-ash-stabilized gravel (CFRCA). Five different mixture ratios of recycled brick and recycled concrete were designed. Dry shrinkage tests, temperature shrinkage tests, freeze-thaw cycle tests, ultrasonic tests, and microscopic analyses were then conducted. The test results showed that the water loss rate, dry shrinkage strain, and dry shrinkage coefficient of CFRBCA increased as the age and brick content increased and tended to be stable by approximately the 40th day of age. The reclaimed gravel content had a great influence on the temperature shrinkage of CFRBCA: the temperature shrinkage coefficient first increased and then decreased as the temperature decreased and reached a peak at −10 to 0 °C. The microstructure analysis showed that as the number of freeze-thaw cycles increases, cracks appear and extend in the CFRBCA, hydration products gradually change from dense to loose, and the Ca/Si ratio increases. Through these experiments, the logarithmic relationship model between ultrasonic wave velocity and CFRBCA strength damage, which can better predict the strength loss caused by CFRBCA variation with freeze-thaw cycles, was established. The brick content is the key parameter affecting the durability of the freeze-thawed CFRBCA, and thus the brick slag content should be properly controlled in engineering applications.

Funder

National Natural Science Foundation of China

Key research and development program of Ningxia

Publisher

MDPI AG

Subject

General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3