Effect of Sintering Temperature and Polarization on the Dielectric and Electrical Properties of La0.9Sr0.1MnO3 Manganite in Alternating Current

Author:

Hizi Wided,Gassoumi Malek,Rahmouni Hedi,Guesmi Ahlem,Ben Hamadi NaoufelORCID,Dhahri Essebti

Abstract

The electrical characterization ofa La0.9Sr0.1MnO3 compound sintered at 800, 1000 and 1200 °C was investigated by means of the impedance-spectroscopy technique. As the results, the experimental conductivity spectra were explained in terms of the power law. The AC-conductivity study reveals the contributions of different conduction mechanisms. Indeed, the variation in the frequency exponents (‘s1’ and ‘s2’) as a function of the temperature confirms the thermal activation of the conduction process in the system. It proves, equally, that the transport properties are governed by the non-small-polaron-tunneling and the correlated-barrier-hopping mechanisms. Moreover, the values of the frequency exponents increase under the sintering-temperature (TS) effect. Such an evolution may be explained energetically. The jump relaxation model was used to explain the electrical conductivity in the dispersive region, as well as the frequency-exponent values by ionic conductivity. Under electrical polarization with applied DC biases of Vp = 0.1 and 2 V at room temperature, the results show the significant enhancement of the electrical conductivity. In addition, the dielectric study reveals the evident presence of dielectric relaxation. Under the sintering-temperature effect, the dielectric constant increases enormously. Indeed, the temperature dependence of the dielectric constant is well fitted by the modified Curie–Weiss law. Thus, the deduced values of the parameter (γ) confirm the relaxor character and prove the diffuse phase transition of our material. Of note is the high dielectric-permittivity magnitude, which indicates that the material is promising for microelectronic devices.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3