Prediction of Streamflow Based on Dynamic Sliding Window LSTM

Author:

Dong Limei,Fang Desheng,Wang Xi,Wei Wei,Damaševičius RobertasORCID,Scherer RafałORCID,Woźniak MarcinORCID

Abstract

The streamflow of the upper reaches of the Yangtze River exhibits different timing and periodicity characteristics in different quarters and months of the year, which makes it difficult to predict. Existing sliding window-based methods usually use a fixed-size window, for which the window size selection is random, resulting in large errors. This paper proposes a dynamic sliding window method that reflects the different timing and periodicity characteristics of the streamflow in different months of the year. Multiple datasets of different months are generated using a dynamic window at first, then the long-short term memory (LSTM) is used to select the optimal window, and finally, the dataset of the optimal window size is used for verification. The proposed method was tested using the hydrological data of Zhutuo Hydrological Station (China). A comparison between the flow prediction data and the measured data shows that the prediction method based on a dynamic sliding window LSTM is more accurate by 8.63% and 3.85% than the prediction method based on fixed window LSTM and the dynamic sliding window back-propagation neural network, respectively. This method can be generally used for the time series data prediction with different periodic characteristics.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3