Revisiting the Charge-Transfer States at Pentacene/C60 Interfaces with the GW/Bethe–Salpeter Equation Approach

Author:

Fujita TakatoshiORCID,Noguchi YoshifumiORCID,Hoshi TakeoORCID

Abstract

Molecular orientations and interfacial morphologies have critical effects on the electronic states of donor/acceptor interfaces and thus on the performance of organic photovoltaic devices. In this study, we explore the energy levels and charge-transfer states at the organic donor/acceptor interfaces on the basis of the fragment-based GW and Bethe–Salpeter equation approach. The face-on and edge-on orientations of pentacene/C60 bilayer heterojunctions have employed as model systems. GW+Bethe–Salpeter equation calculations were performed for the local interface structures in the face-on and edge-on bilayer heterojunctions, which contain approximately 2000 atoms. Calculated energy levels and charge-transfer state absorption spectra are in reasonable agreements with those obtained from experimental measurements. We found that the dependence of the energy levels on interfacial morphology is predominantly determined by the electrostatic contribution of polarization energy, while the effects of induction contribution in the edge-on interface are similar to those in the face-on. Moreover, the delocalized charge-transfer states contribute to the main absorption peak in the edge-on interface, while the face-on interface features relatively localized charge-transfer states in the main absorption peak. The impact of the interfacial morphologies on the polarization and charge delocalization effects is analyzed in detail.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3