Thermal Characteristics of Expandable Graphite–Wood Particle Composites

Author:

Chun Kwanok,Kim Jeonggon,Rie DonghoORCID

Abstract

According to the Fire Statistics Yearbook of the National Fire Agency of the Republic of Korea, the total number of fires in 2018 was 42,338, which resulted in 2500 victims and amounted to property damages of approximately 560 billion KRW. The number of fires in buildings where wood was used as a finishing material was 28,013 (66%) in that period. To minimize human and property damage, composite materials were prepared by mixing wood particles with expandable graphite. The physical and thermal properties of the composite materials were investigated. It was observed that the expansion rate increased by 341.7% according to the expandable graphite content. Additionally, the total heat released and the thermal conductivity decreased from 38.63 to 2.5 MJ/m2 and from 24.62 to 7.8 W/m·K. The time to inactivity of white mouse in the smoke toxicity test was 14.9 min and exceeded the toxicity standard for flame retardant performance. The expandable graphite added to composite materials adopted worm-like shapes as a result of combustion, and it formed a fine lattice layer structure with 16–22 μm gaps that could reduce thermal conductivity. In addition, we can minimize the damage to people and property in the event of a fire.

Funder

Incheon National University

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3