Exacerbation of Liver Tumor Metastasis in twist1a+/xmrk+ Double Transgenic Zebrafish following Lipopolysaccharide or Dextran Sulphate Sodium Exposure

Author:

Lu Jeng-WeiORCID,Sun Yuxi,Lin Liang-InORCID,Liu Dong,Gong Zhiyuan

Abstract

The poor prognosis for patients with hepatocellular carcinoma (HCC) is related directly to metastasis. The Twist1 gene encodes for a transcription factor essential to embryogenesis. It has also been shown to promote epithelial-to-mesenchymal transition (EMT), invasion, and metastasis; however, there is currently no in vivo evidence that Twist1 plays a role in the metastasis of liver tumors. Zebrafish are increasingly being used as an alternative cancer model. In the current study, an adult-stage zebrafish HCC model was used to examine the synergistic effects of twist1a and xmrk, a well characterized oncogene, during HCC metastasis. We also examined the effects of two inflammatory agents, lipopolysaccharides (LPS) and dextran sulfate sodium (DSS), on the hepatocyte-specific expression of transgenic twist1a and xmrk. The conditional overexpression of twist1a and xmrk was shown to promote liver tumor metastasis in zebrafish, resulting in increased apoptosis and cell proliferation as well as tumor maintenance and propagation independent of the inherent EMT-inducing activity of xmrk. Exposing twist1a+/xmrk+ transgenic zebrafish to LPS or DSS was shown to promote metastasis, indicating that the overexpression of twist1a and xmrk led to crosstalk between the signaling pathways involved in EMT. This study provides important evidence pertaining to the largely overlooked effects of signaling crosstalk between twist1a and xmrk in regulating HCC metastasis. Our results also suggest that the co-expression of twist1a/xmrk in conjunction with exposure to LPS or DSS enhances HCC metastasis, and provides a valuable in vivo platform by which to investigate tumor initiation and metastasis in the study of liver cancer.

Funder

Ministry of Education of Singapore

National Taiwan University Hospital

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3