Analysis of Surface Runoff Characteristics in Zhengzhou City under Extreme Rainfall Conditions

Author:

Wang Yong1,Li Shuangquan1,Hu Chanjuan1,Ren Jie1,Liu Peng1,Zhao Chang1,Zhu Mengke1

Affiliation:

1. Institute of Geographical Sciences, Henan Academy of Sciences, Zhengzhou 450052, China

Abstract

In recent years, global climate change has become more and more obvious, and extreme rainfall weather has occurred frequently, which has a serious impact on people’s life and property safety. In order to reduce the risk of urban flooding and contribute to the sustainable development of the urban economy, society, and environment, this study takes Zhengzhou City as the study area. The surface runoff during extreme rainfall events from 2005 to 2023 was simulated using the SCS-CN model, and the spatiotemporal patterns of surface runoff during extreme rainfall conditions and their influencing factors were investigated. The results showed that (1) the average annual extreme rainfall in the study area was 95.6 mm, and the average annual surface runoff was 76.5 mm, with cultivated land contributing the most to surface runoff, accounting for more than 50%. The annual average frequency of extreme rainfall in the study area ranged from 0 to 3 times. (2) During the extreme rainfall events in 2021 and 2023, the surface runoff of the main urban area was relatively great. Under the influence of impermeable surfaces, the surface runoff of the main urban area was greater than that of the surrounding area, even when the rainfall in the main urban area was less than that in the surrounding urban area. In addition, during these two extreme rainfall events, the surface runoff in the slight slope (<5°) area was the greatest; overall, the larger the slope was, the smaller the surface runoff. (3) Differences between rainfall and surface runoff (DRS) of the different administrative districts in the study area showed three trends from 2005 to 2020, with those of most areas showing a clear decreasing trend, which was affected mainly by the surface runoff potential of the land use type. Under the same rainfall conditions (110 mm), the surface runoff of urban land and construction land was 1.4–2.5 times that of various types of woodland and grassland. From 2005 to 2020, the area of urban land and other construction land increased by 104.13%, the coverage area of woodland and grassland decreased by 35.90%, and the surface runoff potential increased in most areas of the study area. To reduce the risk of urban waterlogging, most areas of Zhengzhou, especially the main urban area and slight slope areas, need to rationally regulate land use and increase the coverage ratio of woodland and grassland.

Funder

Basic Scientific Research of Henan Academy of Sciences

Joint Fund of Henan Province Science and Technology R&D Program

Scientific and Technological Research Project of Henan Province

Publisher

MDPI AG

Reference36 articles.

1. The challenge to keep global warming below 2 °C;Peters;Nat. Clim. Change,2013

2. More extreme precipitation in the world’s dry and wet regions;Donat;Nat. Clim. Change,2016

3. The roles of short-lived climate forcers in a changing climate;Liao;Clim. Change Res.,2021

4. Trends in seasonal precipitation extremes—An indicator of ‘climate’ change in Kerala, India;Pal;J. Hydrol.,2009

5. Robust responses of the hydrological cycle to global warming;Held;J. Clim.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3