Abstract
Civil structural health monitoring (CSHM) has become significantly more important within the last decades due to rapidly growing construction volume worldwide as well as aging infrastructure and longer service lifetimes of the structures. The utilization of distributed fiber optic sensing (DFOS) allows the assessment of strain and temperature distributions continuously along the installed sensing fiber and is widely used for testing of concrete structures to detect and quantify local deficiencies like cracks. Relations to the curvature and bending behavior are however mostly excluded. This paper presents a comprehensive study of different approaches for distributed fiber optic shape sensing of concrete structures. Different DFOS sensors and installation techniques were tested within load tests of concrete beams as well as real-scale tunnel lining segments, where the installations were interrogated using fully-distributed sensing units as well as by fiber Bragg grating interrogators. The results point out significant deviations between the capabilities of the different sensing systems, but demonstrate that DFOS can enable highly reliable shape sensing of concrete structures, if the system is appropriately designed depending on the CSHM application.
Funder
Österreichische Forschungsförderungsgesellschaft
Graz University of Technology
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献