Research on Seismic Phase Recognition Method Based on Bi-LSTM Network

Author:

Wang Li12ORCID,Cai Jianxian12,Duan Li12,Guo Lili12,Shi Xingxing12,Cai Huanyu12

Affiliation:

1. College of Electronic Science and Control Engineering, Institute of Disaster Prevention, Langfang 065201, China

2. Hebei Key Laboratory of Seismic Disaster Instrument and Monitoring Technology, Institute of Disaster Prevention, Langfang 065201, China

Abstract

In order to improve the precision of phase recognition and reduce the rate of misdetection, this paper applies the deep learning method to automatic phase recognition. In this paper, an automatic seismic phase recognition model based on the Bi-LSTM network is designed. To test the performance of this model, the STEAD dataset is used for training and testing, and this model is compared with the traditional STA/LTA and AIC methods. The experimental results show that, compared to STA/LTA and AIC methods, the Bi-LSTM network can reduce the misdetection rate by about 8–15%, and improve the RSEM; especially, the prediction error of S-wave is greatly reduced.

Funder

Scientific Research Project Item of Hebei Province Education Department

Science and Technology Innovation Program for Postgraduate students in IDP subsidized by Fundamental Research Funds for the Central Universities

Key Laboratory Open Fund Project of Hebei Provincial

College Students’ Innovation and Entrepreneurship Training Program Project of Institute of Disaster Prevention

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3