Extraction of Minimal Set of Traffic Features Using Ensemble of Classifiers and Rank Aggregation for Network Intrusion Detection Systems

Author:

Krupski Jacek1ORCID,Iwanowski Marcin1ORCID,Graniszewski Waldemar1ORCID

Affiliation:

1. Institute of Control and Industrial Electronics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa, Poland

Abstract

Network traffic classification models, an essential part of intrusion detection systems, need to be as simple as possible due to the high speed of network transmission. One of the fastest approaches is based on decision trees, where the classification process requires a series of tests, resulting in a class assignment. In the network traffic classification process, these tests are performed on extracted traffic features. The classification computational efficiency grows when the number of features and their tests in the decision tree decreases. This paper investigates the relationship between the number of features used to construct the decision-tree-based intrusion detection model and the classification quality. This work deals with a reference dataset that includes IoT/IIoT network traffic. A feature selection process based on the aggregated rank of features computed as the weighted average of rankings obtained using multiple (in this case, six) classifier-based feature selectors is proposed. It results in a ranking of 32 features sorted by importance and usefulness in the classification process. In the outcome of this part of the study, it turns out that acceptable classification results for the smallest number of best features are achieved for the eight most important features at −95.3% accuracy. In the second part of these experiments, the dependence of the classification speed and accuracy on the number of most important features taken from this ranking is analyzed. In this investigation, optimal times are also obtained for eight or fewer number of the most important features, e.g., the trained decision tree needs 0.95 s to classify nearly 7.6 million samples containing eight network traffic features. The conducted experiments prove that a subset of just a few carefully selected features is sufficient to obtain reasonably high classification accuracy and computational efficiency.

Funder

POB Cybersecurity and Data Analysis of Warsaw University of Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3