Abstract
Lanthanum orthoferrites are a versatile class of catalysts. Here, the photocatalytic bactericidal performance of LaFeO3 (LF) to inactivate pathogenic microorganisms, i.e., Escherichia coli (E. coli), in water under simulated solar irradiation conditions was investigated. Various competing and contributing factors were covered to visualize the reaction medium consisting of E. coli K12 cells, organic sub-fractions formed by cell destruction, and LF surface. LF solar photocatalytic inactivation (SPCI) kinetics revealed the highest inactivation rate in ultrapure water as expected, followed by distilled water (DW), aqueous solution containing anions and cations (WM) and saline solution (SS). Characterization of the released organic matter was achieved by UV-vis and fluorescence spectroscopic techniques as well as organic carbon contents (DOC). Upon SPCI, significant amounts of K+ along with released protein contents were detected expressing cell wall destruction and lysis. Under the specified experimental conditions, in the presence of released intracellular organic and inorganic components via cell lysis, a significant count of E. coli was still present in SS, whereas almost all bacteria were removed in other matrices due to various challenging reasons. Based on the presented data, SPCI of E. coli using LF as a novel photocatalyst was successfully demonstrated as an alternative and promising method for disinfection purposes.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献