Audio Encryption Algorithm Based on Chen Memristor Chaotic System

Author:

Dai WanyingORCID,Xu XiangliangORCID,Song XiaomingORCID,Li GuodongORCID

Abstract

The data space for audio signals is large, the correlation is strong, and the traditional encryption algorithm cannot meet the needs of efficiency and safety. To solve this problem, an audio encryption algorithm based on Chen memristor chaotic system is proposed. The core idea of the algorithm is to encrypt the audio signal into the color image information. Most of the traditional audio encryption algorithms are transmitted in the form of noise, which makes it easy to attract the attention of attackers. In this paper, a special encryption method is used to obtain higher security. Firstly, the Fast Walsh–Hadamar Transform (FWHT) is used to compress and denoise the signal. Different from the Fast Fourier Transform (FFT) and the Discrete Cosine Transform (DCT), FWHT has good energy compression characteristics. In addition, compared with that of the triangular basis function of the Fast Fourier Transform, the rectangular basis function of the FWHT can be more effectively implemented in the digital circuit to transform the reconstructed dual-channel audio signal into the R and B layers of the digital image matrix, respectively. Furthermore, a new Chen memristor chaotic system solves the periodic window problems, such as the limited chaos range and nonuniform distribution. It can generate a mask block with high complexity and fill it into the G layer of the color image matrix to obtain a color audio image. In the next place, combining plaintext information with color audio images, interactive channel shuffling can not only weaken the correlation between adjacent samples, but also effectively resist selective plaintext attacks. Finally, the cryptographic block is used for overlapping diffusion encryption to fill the silence period of the speech signal, so as to obtain the ciphertext audio. Experimental results and comparative analysis show that the algorithm is suitable for different types of audio signals, and can resist many common cryptographic analysis attacks. Compared with that of similar audio encryption algorithms, the security index of the algorithm is better, and the efficiency of the algorithm is greatly improved.

Funder

Xinjiang University of Finance and Economics

Xinjiang Uygur Autonomous Region Natural Science Fund

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3