Review on Performance Enhancement of Photovoltaic/Thermal–Thermoelectric Generator Systems with Nanofluid Cooling

Author:

Garud Kunal SandipORCID,Hwang Seong-Guk,Han Jeong-Woo,Lee Moo-YeonORCID

Abstract

Photovoltaics (PVs) are an effective technology to harvest the solar energy and satisfy the increasing global electricity demand. The effectiveness and life span of PVs could be enhanced by enabling effective thermal management. The conversion efficiency and surface temperature of PVs have an inverse relationship, and hence the cooling of PVs as an emerging body of work needs to have attention paid to it. The integration of a thermoelectric generator (TEG) to PVs is one of the widely applied thermal management techniques to improve the performance of PVs as well as combined systems. The TEG utilizes the waste heat of PVs and generate the additional electric power output. The nanofluid enables superior thermal properties compared to that of conventional cooling fluids, and therefore the performance of photovoltaic/thermal–thermoelectric generator (PV/T-TEG) systems with nanofluid cooling is further enhanced compared to that of conventional cooling. The TEG enables a symmetrical temperature difference with a hot side due to the heat from PVs, and a cold side due to the nanofluid cooling. Therefore, the symmetrical thermal management system, by integrating the PV/T, TEG, and nanofluid cooling, has been widely adopted in recent times. The present review comprehensively summarizes various experimental, numerical, and theoretical research works conducted on PV/T-TEG systems with nanofluid cooling. The research studies on PV/T-TEG systems with nanofluid cooling were reviewed, focusing on the time span of 2015–2021. This review elaborates the various approaches and advancement in techniques adopted to enhance the performance of PV/T-TEG systems with nanofluid cooling. The application of TEG with nanofluid cooling in the thermal management of PVs is an emerging research area; therefore, this comprehensive review can be considered as a reference for future development and innovations.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3