Abstract
Microgrid operations planning is crucial for emerging energy microgrids to enhance the share of clean energy power generation and ensure a safe symmetry power grid among distributed natural power sources and stable functioning of the entire power system. This paper suggests a new improved version (namely, ESSA) of the sparrow search algorithm (SSA) based on an elite reverse learning strategy and firefly algorithm (FA) mutation strategy for the power microgrid optimal operations planning. Scheduling cycles of the microgrid with a distributed power source’s optimal output and total operation cost is modeled based on variables, e.g., environmental costs, electricity interaction, investment depreciation, and maintenance system, to establish grid multi-objective economic optimization. Compared with other literature methods, such as Genetic algorithm (GA), Particle swarm optimization (PSO), Firefly algorithm (FA), Bat algorithm (BA), Grey wolf optimization (GWO), and SSA show that the proposed plan offers higher performance and feasibility in solving microgrid operations planning issues.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献