Abstract
One of the most important features in the analysis of the singular perturbation methods is the reduction of models. Likewise, the bond graph methodology in dynamic system modeling has been widely used. In this paper, the bond graph modeling of nonlinear systems with singular perturbations is presented. The class of nonlinear systems is the product of state variables on three time scales (fast, medium, and slow). Through this paper, the symmetry of mathematical modeling and graphical modeling can be established. A main characteristic of the bond graph is the application of causality to its elements. When an integral causality is assigned to the storage elements that determine the state variables, the dynamic model is obtained. If the storage elements of the fast dynamics have a derivative causality and the storage elements of the medium and slow dynamics an integral causality is assigned, a reduced model is obtained, which consists of a dynamic model for the medium and slow time scales and a stationary model of the fast time scale. By applying derivative causality to the storage elements of the fast and medium dynamics and an integral causality to the storage elements of the slow dynamics, the quasi-steady-state model for the slow dynamics is obtained and stationary models for the fast and medium dynamics are defined. The exact and reduced models of singularly perturbed systems can be interpreted as another symmetry in the development of this paper. Finally, the proposed methodology was applied to a system with three time scales in a bond graph approach, and simulation results are shown in order to indicate the effectiveness of the proposed methodology.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Reference33 articles.
1. Singular Perturbation Methods in Control: Analysis and Design;Kokotovic,1986
2. Singular Perturbation Methodology in Control Systems;Naidu,1988
3. Multiple time scales for nonlinear systems
4. The exact slow-fast decomposition of the algebraic Ricatti equation of singularly perturbed systems