Abstract
In this paper, we introduce mixed-norm amalgam spaces (Lp→,Ls→)α(Rn) and prove the boundedness of maximal function. Then, the dilation argument obtains the necessary and sufficient conditions of fractional integral operators’ boundedness. Furthermore, the strong estimates of linear commutators [b,Iγ] generated by b∈BMO(Rn) and Iγ on mixed-norm amalgam spaces (Lp→,Ls→)α(Rn) are established as well. In order to obtain the necessary conditions of fractional integral commutators’ boundedness, we introduce mixed-norm Wiener amalgam spaces (Lp→,Ls→)(Rn). We obtain the necessary and sufficient conditions of fractional integral commutators’ boundedness by the duality theory. The necessary conditions of fractional integral commutators’ boundedness are a new result even for the classical amalgam spaces. By the equivalent norm and the operators Str(p)(f)(x), we study the duality theory of mixed-norm amalgam spaces, which makes our proof easier. In particular, note that predual of the primal space is not obtained and the predual of the equivalent space does not mean the predual of the primal space.
Funder
National Natural Science Foundation of China
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献