Spatial Decay Bounds for the Brinkman Fluid Equations in Double-Diffusive Convection

Author:

Chen Xuejiao,Li YuanfeiORCID,Li Dandan

Abstract

In this paper, we consider the Brinkman equations pipe flow, which includes the salinity and the temperature. Assuming that the fluid satisfies nonlinear boundary conditions at the finite end of the cylinder, using the symmetry of differential inequalities and the energy analysis methods, we establish the exponential decay estimates for homogeneous Brinkman equations. That is to prove that the solutions of the equation decay exponentially with the distance from the finite end of the cylinder. To make the estimate of decay explicit, the bound for the total energy is also derived.

Funder

Key projects of universities in Guangdong Province

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference31 articles.

1. Convection in Porous Media;Nield,1992

2. Mathematical Aspects of Penetrative Convection;Straughan,1993

3. Continuous dependence results for an ill-posed problem in nonlinear viscoelasticity

4. Structural Stability for the Brinkman Equations of Porous Media

5. Stability in the initial-time geometry problem for the Brinkman and Darcy equations of flow in porous media;Payne;J. Math. Pures Appl.,1996

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3