Attention Optimized Deep Generative Adversarial Network for Removing Uneven Dense Haze

Author:

Zhao Wenxuan,Zhao YaqinORCID,Feng Liqi,Tang Jiaxi

Abstract

The existing dehazing algorithms are problematic because of dense haze being unevenly distributed on the images, and the deep convolutional dehazing network relying too greatly on large-scale datasets. To solve these problems, this paper proposes a generative adversarial network based on the deep symmetric Encoder-Decoder architecture for removing dense haze. To restore the clear image, a four-layer down-sampling encoder is constructed to extract the semantic information lost due to the dense haze. At the same time, in the symmetric decoder module, an attention mechanism is introduced to adaptively assign weights to different pixels and channels, so as to deal with the uneven distribution of haze. Finally, the framework of the generative adversarial network is generated so that the model achieves a better training effect on small-scale datasets. The experimental results showed that the proposed dehazing network can not only effectively remove the unevenly distributed dense haze in the real scene image, but also achieve great performance in real-scene datasets with less training samples, and the evaluation indexes are better than other widely used contrast algorithms.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference59 articles.

1. Scattering phenomena. (book reviews: Optics of the atmosphere. scattering by molecules and particles);Mccartney;Science,1977

2. Optics of the Atmosphere: Scattering by Molecules and Particles;Cartney,1976

3. Single image haze removal using dark channel prior;He;IEEE Trans. Pattern Anal. Mach. Intell.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3