Comparing Quantum Gravity Models: String Theory, Loop Quantum Gravity, and Entanglement Gravity versus SU(∞)-QGR

Author:

Ziaeepour HouriORCID

Abstract

In a previous article we proposed a new model for quantum gravity (QGR) and cosmology, dubbed SU(∞)-QGR. One of the axioms of this model is that Hilbert spaces of the Universe and its subsystems represent the SU(∞) symmetry group. In this framework, the classical spacetime is interpreted as being the parameter space characterizing states of the SU(∞) representing Hilbert spaces. Using quantum uncertainty relations, it is shown that the parameter space—the spacetime—has a 3+1 dimensional Lorentzian geometry. Here, after a review of SU(∞)-QGR, including a demonstration that its classical limit is Einstein gravity, we compare it with several QGR proposals, including: string and M-theories, loop quantum gravity and related models, and QGR proposals inspired by the holographic principle and quantum entanglement. The purpose is to find their common and analogous features, even if they apparently seem to have different roles and interpretations. The hope is that this exercise provides a better understanding of gravity as a universal quantum force and clarifies the physical nature of the spacetime. We identify several common features among the studied models: the importance of 2D structures; the algebraic decomposition to tensor products; the special role of the SU(2) group in their formulation; the necessity of a quantum time as a relational observable. We discuss how these features can be considered as analogous in different models. We also show that they arise in SU(∞)-QGR without fine-tuning, additional assumptions, or restrictions.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Minimal length corrections to magnetic birefringence in vacuum;The European Physical Journal Plus;2023-10-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3