Abstract
Much research has been conducted on two-sided Exponentially Weighted Moving Average (EWMA) control charts, while less work has been devoted to the one-sided EWMA charts. Traditional one-sided EWMA charts involve resetting the EWMA statistic to the target whenever it falls below or above the target, or truncating the observations above or below the target and further applying the EWMA statistic to the truncated samples. In order to further improve the performance of traditional one-sided EWMA mean (X¯) charts, this paper studies the performance of the Modified One-sided EWMA (MOEWMA) X¯ charts to monitor a normally distributed process. The Monte-Carlo simulation method is used to obtain the zero- and steady-state Run Length (RL) properties of the proposed control charts. Through extensive simulations and comparisons with other charts, it is shown that the proposed MOEWMA X¯ charts compare favorably with some existing competing charts. Moreover, by attaching the variable sampling intervals (VSI) feature to the MOEWMA X¯ charts, it is shown that the VSI MOEWMA charts outperform the corresponding charts without the VSI feature. Finally, a real data example from manufacturing process shows the implementation of the proposed one-sided charts.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Reference42 articles.
1. An approach to the probability distribution of cusum run length
2. The Shewhart Control Chart—Tests for Special Causes
3. Exponentially weighted moving average control schemes: Properties and enhancements;Lucas;J. Qual. Technol.,1990
4. Cumulative Sum Charts and Charting for Quality Improvement;Hawkins,1999
5. The computation of average run length and average time to signal: an overview
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献