An Approach to Risk Assessment and Threat Prediction for Complex Object Security Based on a Predicative Self-Configuring Neural System

Author:

Korneev Nikolai Vladimirovich,Korneeva Julia Vasilievna,Yurkevichyus Stasis Petrasovich,Bakhturin Gennady Ivanovich

Abstract

We identified a set of methods for solving risk assessment problems by forecasting an incident of complex object security based on incident monitoring. The solving problem approach includes the following steps: building and training a classification model using the C4.5 algorithm, a decision tree creation, risk assessment system development, and incident prediction. The last system is a predicative self-configuring neural system that includes a SCNN (self-configuring neural network), an RNN (recurrent neural network), and a predicative model that allows for determining the risk and forecasting the probability of an incident for an object. We proposed and developed: a mathematical model of a neural system; a SCNN architecture, where, for the first time, the fundamental problem of teaching a perceptron SCNN was solved without a teacher by adapting thresholds of activation functions of RNN neurons and a special learning algorithm; and a predicative model that includes a fuzzy output system with a membership function of current incidents of the considered object, which belongs to three fuzzy sets, namely “low risk”, “medium risk”, and “high risk”. For the first time, we gave the definition of the base class of an object’s prediction and SCNN, and the fundamental problem of teaching a perceptron SCNN was solved without a teacher. We propose an approach to neural system implementation for multiple incidents of complex object security. The results of experimental studies of the forecasting error at the level of 2.41% were obtained.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference62 articles.

1. Intelligent complex security management system FEC for the Industry 5.0;Korneev,2020

2. Global Energy Review 2020https://iea.blob.core.windows.net/assets/7e802f6a-0b30-4714-abb1-46f21a7a9530/Global_Energy_Review_2020.pdf

3. Design and Evaluation of Physical Protection Systems;Garcia,2008

4. CTPED and Traditional Security Countermeasures: 150 Things You Should Know;Fennelly,2018

5. CIM-based information model for power grid enterprise asset management and its application;Cao;Autom. Electr. Power Syst.,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3