SCRnet: A Spatial Consistency Guided Network Using Contrastive Learning for Point Cloud Registration

Author:

Shao HuixiangORCID,Zhang Zhijiang,Feng Xiaoyu,Zeng Dan

Abstract

Point cloud registration is used to find a rigid transformation from the source point cloud to the target point cloud. The main challenge in the point cloud registration is in finding correct correspondences in complex scenes that may contain many noise and repetitive structures. At present, many existing methods use outlier rejections to help the network obtain more accurate correspondences, but they often ignore the spatial consistency between keypoints. Therefore, to address this issue, we propose a spatial consistency guided network using contrastive learning for point cloud registration (SCRnet), in which its overall stage is symmetrical. SCRnet consists of four blocks, namely feature extraction block, confidence estimation block, contrastive learning block and registration block. Firstly, we use mini-PointNet to extract coarse local and global features. Secondly, we propose confidence estimation block, which formulate outlier rejection as confidence estimation problem of keypoint correspondences. In addition, the local spatial features are encoded into the confidence estimation block, which makes the correspondence possess local spatial consistency. Moreover, we propose contrastive learning block by constructing positive point pairs and hard negative point pairs and using Point-Pair-INfoNCE contrastive loss, which can further remove hard outliers through global spatial consistency. Finally, the proposed registration block selects a set of matching points with high spatial consistency and uses these matching sets to calculate multiple transformations, then the best transformation can be identified by initial alignment and Iterative Closest Point (ICP) algorithm. Extensive experiments are conducted on KITTI and nuScenes dataset, which demonstrate the high accuracy and strong robustness of SCRnet on point cloud registration task.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3