Author:
Li Qi,Chen Huaping,Liu Xiufang
Abstract
Excess zeros is a common phenomenon in time series of counts, but it is not well studied in asymmetrically structured bivariate cases. To fill this gap, we first considered a new first-order, bivariate, random coefficient, integer-valued autoregressive model with a bivariate innovation, which follows the asymmetric Hermite distuibution with five parameters. An attractive advantage of the new model is that the dependence between series is achieved by innovative parts and the cross-dependence of the series. In addition, the time series of counts are modeled with excess zeros, low counts and low over-dispersion. Next, we established the stationarity and ergodicity of the new model and found its stochastic properties. We discuss the conditional maximum likelihood (CML) estimate and its asymptotic property. We assessed finite sample performances of estimators through a simulation study. Finally, we demonstrate the superiority of the proposed model by analyzing an artificial dataset and a real dataset.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献