An Integrated Method for Modular Design Based on Auto-Generated Multi-Attribute DSM and Improved Genetic Algorithm

Author:

Wang ShuaiORCID,Li Zhongkai,He Chao,Liu Dengzhuo,Zou Guangyu

Abstract

Modular architecture is very conducive to the development, maintenance, and upgrading of electromechanical products. In the initial stage of module division, the design structure matrix (DSM) is a crucial measure to concisely express the component relationship of electromechanical products through the visual symmetrical structure. However, product structure modeling, as a very important activity, was mostly carried out manually by engineers relying on experience in previous studies, which was inefficient and difficult to ensure the consistency of the model. To overcome these problems, an integrated method for modular design based on auto-generated multi-attribute DSM and improved genetic algorithm (GA) is presented. First, the product information extraction algorithm is designed based on the automatic programming structure provided by commercial CAD software, to obtain the assembly, degrees of freedom, and material information needed for modeling. Secondly, based on the evaluation criteria of product component correlation strength, the structural correlation DSM and material correlation DSM of components are established, respectively, and the comprehensive correlation DSM of products is obtained through weighting processing. Finally, the improved GA and the modularity evaluation index Q are used to complete the product module division and obtain the optimal modular granularity. Based on a model in published literature and a bicycle model, comparative studies are carried out to verify the effectiveness and practicality of the proposed method.

Funder

National Natural Science Foundation of China

Priority Academic Program Development of Jiangsu Education Institutions of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3