Classification of Benign–Malignant Thyroid Nodules Based on Hyperspectral Technology

Author:

Wang Junjie123,Du Jian13,Tao Chenglong13,Qi Meijie13,Yan Jiayue123,Hu Bingliang13,Zhang Zhoufeng13

Affiliation:

1. Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Key Laboratory of Biomedical Spectroscopy of Xi’an, Xi’an 710119, China

Abstract

In recent years, the incidence of thyroid cancer has rapidly increased. To address the issue of the inefficient diagnosis of thyroid cancer during surgery, we propose a rapid method for the diagnosis of benign and malignant thyroid nodules based on hyperspectral technology. Firstly, using our self-developed thyroid nodule hyperspectral acquisition system, data for a large number of diverse thyroid nodule samples were obtained, providing a foundation for subsequent diagnosis. Secondly, to better meet clinical practical needs, we address the current situation of medical hyperspectral image classification research being mainly focused on pixel-based region segmentation, by proposing a method for nodule classification as benign or malignant based on thyroid nodule hyperspectral data blocks. Using 3D CNN and VGG16 networks as a basis, we designed a neural network algorithm (V3Dnet) for classification based on three-dimensional hyperspectral data blocks. In the case of a dataset with a block size of 50 × 50 × 196, the classification accuracy for benign and malignant samples reaches 84.63%. We also investigated the impact of data block size on the classification performance and constructed a classification model that includes thyroid nodule sample acquisition, hyperspectral data preprocessing, and an algorithm for thyroid nodule classification as benign and malignant based on hyperspectral data blocks. The proposed model for thyroid nodule classification is expected to be applied in thyroid surgery, thereby improving surgical accuracy and providing strong support for scientific research in related fields.

Funder

Research on automatic hyperspectral pathology diagnosis technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3