Understanding Nutrient Loads from Catchment and Eutrophication in a Salt Lagoon: The Mar Menor Case

Author:

Pérez-Martín Miguel Ángel1

Affiliation:

1. Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, 46022 València, Spain

Abstract

Eutrophication is a significant threat to aquatic ecosystems worldwide, and the Mar Menor hypersaline lagoon exemplifies a coastal lagoon at risk of algal blooms due to excessive nutrient loads, nitrogen, and phosphorus. These nutrients originate from various sources within the lagoon’s catchment area, including urban, agricultural, and livestock activities. Regular and occasional loads—during flood events—produce algal blooms that can significantly reduce the water oxygen content and cause massive mortalities, as observed in recent years. A daily algal growth model (Mmag) was developed to better understand the processes and determine key elements such as the phosphorus water–sediment interchange and deep water plants that effect the entire ecosystem and algal growth. The analysis developed can be applied in other wetlands around the world facing similar challenges. In the Mar Menor, both nitrogen and phosphorus have high relevance depending on the period of the year and the phosphorus legacy in the sediments. Floods are the main phosphorus input to the lagoon (80–90%), which goes to the sediment and is released after during the warm months in the following years. At the end of summer, phosphorus released from the sediment and the regular nitrate inputs to the lagoon increase the algal bloom risk. The good status of deep water plants, which reduces the phosphorus release in summer, is a key element to reduce the algal bloom risk. An integrated set of measures is required to reduce the mean chlorophyll to levels under 1 or 0.5 µgChla/L that can make the Mar Menor more robust and resilient.

Funder

Spanish Ministry for the Ecological Transition and the Demographic Challenge

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3