The Pilot Study of a Dual-Media Filter Consisting of Mortar and Modified Zeolite for Removing Heavy Metals from Expressway Stormwater Runoff

Author:

Kim Do-Gun1ORCID,Ko Seok-Oh2ORCID

Affiliation:

1. Department of Environmental Engineering, Sunchon National University, 255 Jungang-ro, Suncheon 57922, Republic of Korea

2. Department of Civil Engineering, Kyung Hee University, 1732, Deakyungdaero, Yongin 17104, Republic of Korea

Abstract

Stormwater runoff from expressways generally has high concentrations of heavy metals. However, the heavy metal removal of conventional sand filters is low, so a better alternative is required. In this study, several inexpensive materials were tested for their heavy metal adsorption, and the performances of the selected materials were evaluated via field tests. The results of laboratory experiments showed that the Cu adsorption capacity followed the order of Na-zeolite > zeolite > biochar > granular ferric hydroxide > sand ≥ orchid stone. The performance of a pilot-scale dual-media filter filled with Na-zeolite and mortar granules was monitored for four rainfall events at an expressway site, and was compared to that of a sand filter. Both filters showed similar event mean concentration (EMC) removal for BOD, COD, TOC, and T-N, without a notable decrease in hydraulic conductivity. However, the removal of T-P, Cu, Zn, Cr, Ni, and Fe by the dual-media filter was 37.6–74.8%, 59.1–90.1%, 84.9–99.7%, 100.0%, 100.0%, and 78.7–94.4%, respectively, which was up to 4.5 times of that of the sand filter. In addition, it was stable regardless of the influent EMCs. Overall, we showed that the dual-media filter is excellent in heavy metal removal from stormwater runoff, with negligible clogging.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3