Soil Moisture Distribution and Time Stability of Aerially Sown Shrubland in the Northeastern Margin of Tengger Desert (China)

Author:

Zhao Zhenyu1,Tang Guodong23,Wang Jian23,Liu Yanping23,Gao Yong1

Affiliation:

1. College of Desert Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China

2. Yinshanbeilu National Field Research Station of Steppe Eco-Hydrological System, China Institute of Water Resources and Hydropower Research, Beijing 100038, China

3. Institute of Water Resources for Pastoral Area, Ministry of Water Resources, Hohhot 010020, China

Abstract

Considering the importance of soil moisture in hydrological processes, it is crucial to understand the water distribution and time stability of different aerial shrub soils. There are few studies on the soil moisture of aerial vegetation in the northeastern margin of the Tengger Desert. Based on long-term monitoring data from the aerial seeding area in the northeastern margin of the Tengger Desert, the distribution characteristics of soil moisture and the temporal stability of soil moisture were studied. From June to October 2022, the soil moisture monitoring instrument WatchDog was used to monitor the long-term soil moisture changes (0–200 cm) in the four aerial afforestation plots of Hedysarum scoparium, mixed forest land (Hedysarum scoparium dominant species), mixed forest land (Calligonum mongolicum dominant species), and Calligonum mongolicum. The Spearman rank correlation coefficient was used to study the temporal stability of soil moisture in the four plots. Rainfall data were collected through small weather stations. The results show that the average soil water storage of four kinds of aerial shrub land in the study area was the highest in August, and the average soil water storage of different forest lands was different. The soil water content of the surface layer (0–30 cm) fluctuated the most in different months. The variation in soil water content in the shallow layer (30–100 cm) was smaller than that in the surface layer. The fluctuation of soil water content in the middle layer (100–150 cm) and deep layer (150–200 cm) was relatively stable. There was no strong variability in soil moisture content, and the temporal variation coefficient of surface soil moisture was the highest (31.44–39.8%), which showed moderate variability. The temporal variation coefficient of soil moisture in the shallow, middle and deep layers of all kinds of plots was significantly reduced, and the soil moisture stability of different aerial shrub land was the same. Spearman rank correlation analysis showed that the spatial pattern of soil water content in the surface layer (0–30 cm) and deep layer (150–200 cm) was more stable over time, that is, the temporal stability of soil water content was higher, and the temporal stability of soil water content in the middle and shallow layers of different types of shrub land was different. The research results help us to understand the soil hydrological process in the aerial seeding afforestation area in the northeastern margin of Tengger Desert, rationally arrange soil moisture monitoring points, efficiently manage and utilize water resources in the aerial seeding area, and provide a theoretical basis for local vegetation restoration and the optimization of the ecological environment.

Funder

Basic scientific research business fee project of Chinese Academy of Water Sciences

Inner Mongolia Autonomous Region Science and Technology Plan Project

2020 Alashan Left Banner Aerial Seeding Afforestation Science and Technology Support Project

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3