UV-Vis Activated Cu2O/SnO2/WO3 Heterostructure for Photocatalytic Removal of Pesticides

Author:

Enesca Alexandru,Andronic LuminitaORCID

Abstract

A three-steps sol–gel method was used to obtain a Cu2O/SnO2/WO3 heterostructure powder, deposited as film by spray pyrolysis. The porous morphology of the final heterostructure was constructed starting with fiber-like WO3 acting as substrate for SnO2 development. The SnO2/WO3 sample provide nucleation and grew sites for Cu2O formation. Diffraction evaluation indicated that all samples contained crystalline structures with crystallite size varying from 42.4 Å (Cu2O) to 81.8 Å (WO3). Elemental analysis confirmed that the samples were homogeneous in composition and had an oxygen excess due to the annealing treatments. Photocatalytic properties were tested in the presence of three pesticides—pirimicarb, S-metolachlor (S-MCh), and metalaxyl (MET)—chosen based on their resilience and toxicity. The photocatalytic activity of the Cu2O/SnO2/WO3 heterostructure was compared with WO3, SnO2, Cu2O, Cu2O/SnO2, Cu2O/WO3, and SnO2/WO3 samples. The results indicated that the three-component heterostructure had the highest photocatalytic efficiency toward all pesticides. The highest photocatalytic efficiency was obtained toward S-MCh (86%) using a Cu2O/SnO2/WO3 sample and the lowest correspond to MET (8.2%) removal using a Cu2O monocomponent sample. TOC analysis indicated that not all the removal efficiency could be attributed to mineralization, and by-product formation is possible. Cu2O/SnO2/WO3 is able to induce 81.3% mineralization of S-MCh, while Cu2O exhibited 5.7% mineralization of S-MCh. The three-run cyclic tests showed that Cu2O/SnO2/WO3, WO3, and SnO2/WO3 exhibited good photocatalytic stability without requiring additional procedures. The photocatalytic mechanism corresponds to a Z-scheme charge transfer based on a three-component structure, where Cu2O exhibits reduction potential responsible for O2 production and WO3 has oxidation potential responsible for HO· generation.

Funder

Unitatea Executiva Pentru Finantarea Invatamantului Superior Si A Cercetarii Stiintifice Universitare

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3