Chitosan-Functionalized Hydroxyapatite-Cerium Oxide Heterostructure: An Efficient Adsorbent for Dyes Removal and Antimicrobial Agent

Author:

Alshahrani Aisha A.ORCID,Alorabi Ali Q.,Hassan M. Shamshi,Amna TouseefORCID,Azizi Mohamed

Abstract

The current research intended to employ a facile and economical process, which is also ecofriendly to transform camel waste bones into novel heterostructure for cleansing of diverse waste waters. The bones of camel were utilized for preparation of hydroxyapatite by hydrothermal method. The prepared hydroxyapatite was applied to the synthesis of cerium oxide-hydroxyapatite coated with natural polymer chitosan (CS-HAP-CeO2) heterostructure. Being abundant natural polymer polysaccharide, chitosan possesses exceptional assets such as accessibility, economic price, hydrophilicity, biocompatibility as well as biodegradability, therefore style it as an outstanding adsorbent for removing colorant and other waste molecules form water. This heterostructure was characterized by various physicochemical processes such as XRD, SEM-EDX, TEM, and FT-IR. The CS-HAP-CeO2 was screened for adsorption of various industrially important dyes, viz., Brilliant blue (BB), Congo red (CR), Crystal violet (CV), Methylene blue (MB), Methyl orange (MO), and Rhodamine B (RB) which are collective pollutants of industrial waste waters. The CS-HAP-CeO2 demonstrated exceptional adsorption against CR dye. The adsorption/or removal efficiency ranges are BB (11.22%), CR (96%), CV (28.22%), MB (47.74%), MO (2.43%), and RB (58.89%) dyes. Moreover, this heterostructure showed excellent bacteriostatic potential for E. coli, that is liable for serious waterborne diseases. Interestingly, this work revealed that the incorporation of cerium oxide and chitosan into hydroxyapatite substantially strengthened antimicrobial and adsorption capabilities than those observed in virgin hydroxyapatite. Herein, we recycled the unwanted camel bones into a novel heterostructure, which assists to reduce water pollution, mainly caused by the dye industries.

Funder

Deanship of Scientific Research at Albaha University

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3