Breaking and Connecting: Highly Hazy and Transparent Regenerated Networked-Nanofibrous Cellulose Films via Combination of Hydrolysis and Crosslinking

Author:

Aburabie JamaliahORCID,Hashaikeh RaedORCID

Abstract

High optical transparency combined with high optical haze are essential requirements for optoelectronic substrates. Light scattering caused by haze is responsible for increasing light harvesting in photon-absorbing active materials, hence increasing efficiencies. A trade-off between transparency and haze is common in solar substrates with high transparency (~90%) and low optical haze (~20%), or vice versa. In this study, we report a novel, highly transparent film fabricated from regenerated cellulose after controlled acid-hydrolysis of microcrystalline cellulose (MCC). The developed networked-nanofibrous cellulose was chemically crosslinked with glutaraldehyde (GA) and vacuum-cured to facilitate the fabrication of mechanically stable films. The effects of crosslinker concentration, crosslinking time, and curing temperature were investigated. Optimum conditions for fabrication unveils high optical transparency (~94%) and high haze (~60%), using 25% GA for 24 hr with a curing temperature of 25 °C; therefore, conveying an optimal substrate for optoelectronics applications. The high haze arises primarily from the crystalline, networked crystals of cellulose II structure formed within the regenerated cellulose upon hydrolysis. Moreover, the developed crosslinked film presents high thermal stability, water resistance, and good mechanical resilience. This high-performance crosslinked cellulose film can be considered a potential material for new environmentally-friendly optical substrates.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference49 articles.

1. Burning Up: A Global History of Fossil Fuel Consumption;Pirani,2018

2. When will fossil fuel reserves be diminished?

3. Towards solar grade silicon: Challenges and benefits for low cost photovoltaics

4. Solar Cells: In Research and Applications—A Review

5. The use of Corning® Willow™ glass for flexible CdTe solar cells;Rance;Proceedings of the 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC),2013

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3