Smart Systems for Material and Process Designing in Direct Nanoimprint Lithography Using Hybrid Deep Learning

Author:

Hirai Yoshihiko,Tsukamoto Sou,Tanabe Hidekatsu,Kameyama Kai,Kawata Hiroaki,Yasuda Masaaki

Abstract

A hybrid smart process and material design system for nanoimprinting is proposed, which is combined with a learning system based on experimental and numerical simulation results. Instead of carrying out extensive learning experiments for various conditions, the simulation learning results are partially complimented when the results can theoretically be predicted by numerical simulation. In other words, the data that are lacking in experimental learning are complimented by simulation-based learning results. Therefore, the prediction of nanoimprint results without experimental learning could be realized under various conditions, even for unknown materials. In this study, material and process designs are demonstrated for a low-temperature nanoimprint process using glycerol-containing polyvinyl alcohol. The experimental results under limited conditions were learned to investigate the optimum glycerol concentrations and process temperatures. Simulation-based learning was used to predict the dependence on press pressure and shape parameters. The prediction results for unknown glycerol concentrations agreed well with the follow-up experiments.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3