Photocatalytic Hydrogen Production from Aqueous Solutions of Glucose and Xylose over Layered Perovskite-like Oxides HCa2Nb3O10, H2La2Ti3O10 and Their Inorganic-Organic Derivatives

Author:

Kurnosenko Sergei A.ORCID,Voytovich Vladimir V.ORCID,Silyukov Oleg I.ORCID,Rodionov Ivan A.,Zvereva Irina A.ORCID

Abstract

Nowadays, the efficient conversion of plant biomass components (alcohols, carbohydrates, etc.) into more energy-intensive fuels, such as hydrogen, is one of the urgent scientific and technological problems. The present study is the first one focused on the photoinduced hydrogen evolution from aqueous D-glucose and D-xylose using layered perovskite-like oxides HCa2Nb3O10, H2La2Ti3O10, and their organically modified derivatives that have previously proven themselves as highly active photocatalysts. The photocatalytic performance was investigated for the bare compounds and products of their surface modification with a 1 mass. % Pt cocatalyst. The photocatalytic experiments followed an innovative scheme including dark stages as well as the control of the reaction suspension’s pH and composition. The study has revealed that the inorganic−organic derivatives of the layered perovskite-like oxides can provide efficient conversion of carbohydrates into hydrogen fuel, being up to 8.3 times more active than the unmodified materials and reaching apparent quantum efficiency of 8.8%. Based on new and previously obtained data, it was shown that the oxides’ interlayer space functions as an additional reaction zone in the photocatalytic hydrogen production and the contribution of this zone to the overall activity is dependent on the steric characteristics of the sacrificial agent used.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3