CO2 Activation and Hydrogenation on Cu-ZnO/Al2O3 Nanorod Catalysts: An In Situ FTIR Study

Author:

Wang Letian,Etim Ubong Jerome,Zhang Chenchen,Amirav LilacORCID,Zhong ZiyiORCID

Abstract

CuZnO/Al2O3 is the industrial catalyst used for methanol synthesis from syngas (CO + H2) and is also promising for the hydrogenation of CO2 to methanol. In this work, we synthesized Al2O3 nanorods (n-Al2O3) and impregnated them with the CuZnO component. The catalysts were evaluated for the hydrogenation of CO2 to methanol in a fixed-bed reactor. The support and the catalysts were characterized, including via in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The study of the CO2 adsorption, activation, and hydrogenation using in situ DRIFT spectroscopy revealed the different roles of the catalyst components. CO2 mainly adsorbed on the n-Al2O3 support, forming carbonate species. Cu was found to facilitate H2 dissociation and further reacted with the adsorbed carbonates on the n-Al2O3 support, transforming them to formate or additional intermediates. Like the n-Al2O3 support, the ZnO component contributed to improving the CO2 adsorption, facilitating the formation of more carbonate species on the catalyst surface and enhancing the efficiency of the CO2 activation and hydrogenation into methanol. The synergistic interaction between Cu and ZnO was found to be essential to increase the space–time yield (STY) of methanol but not to improve the selectivity. The 3% CuZnO/n-Al2O3 displayed improved catalytic performance compared to 3% Cu/n-Al2O3, reaching a CO2 conversion rate of 19.8% and methanol STY rate of 1.31 mmolgcat−1h−1 at 300 °C. This study provides fundamental and new insights into the distinctive roles of the different components of commercial methanol synthesis catalysts.

Funder

Li Ka Shing Foundation Cross Disciplinary Research Grant

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3