Synthesis of Eco-Friendly Silver Nanoparticles Using Glycyrrhizin and Evaluation of Their Antibacterial Ability

Author:

Feng Danni,Zhang Renyin,Zhang Mengting,Fang Ashe,Shi FengORCID

Abstract

In the present study, the biosynthesis of silver nanoparticles (AgNPs) and their antibacterial activity against gram-positive and gram-negative bacteria were investigated. Glycyrrhizin (GL) was used as a reducing agent and stabilizer to rapidly prepare the AgNPs. The distinctive absorption peak at 419 nm confirmed the formation of GL-reduced AgNPs. The TEM and particle size analysis shows that the prepared GL-reduced AgNPs were mostly circular with good dispersion and a relatively uniform particle size of 35 nm on average. Fourier transform infrared spectroscopy analysis was performed to identify the possible biomolecules in the capping and active stabilization of the GL-reduced AgNPs. The antibacterial activity of the GL-reduced AgNPs was analyzed with the Oxford cup diffusion method and filter paper diffusion method. The experimental results show that these properties endowed the GL-reduced AgNPs with high antibacterial activity against Escherichia coli and Staphylococcus aureus and lay a foundation for the use of colloidal silver in antibacterial applications. The GL-reduced AgNPs also had stronger antibacterial activity than sodium citrate-reduced AgNPs, which indicates the advantages of GL-reduced AgNPs compared with sodium citrate-reduced AgNPs in inducing bacteriostasis. The cytotoxicity of GL-reduced AgNPs on human kidney epithelial 293A (HEK293) cells was evaluated via the MTT assay. The results show that GL-reduced AgNPs had lower toxicity to HEK293 cells than sodium citrate-AgNPs, which indicates that the as-prepared GL-reduced AgNPs are environmentally friendly.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference30 articles.

1. Parthenium leaf extract mediated synthesis of silver nanoparticles: A novel approach towards weed utilization;Parashar;Dig. J. Nanomater. Biostruct.,2009

2. Silver enhances antibiotic activity against gram-negative bacteria;RubenMorones-Ramirez;Sci. Transl. Med.,2013

3. Enhanced antibacterial and anti-biofilm activities of biosynthesized silver nanoparticles against pathogenic bacteria;Gurunathan;J. Genet. Environ. Resour. Conserv.,2014

4. Biosorption and bioreduction of diamine silver complex byCorynebacterium

5. Glycyrrhizin Inhibits the Lytic Pathway of Complement - Possible Mechanism of Its Anti-Inflammatory Effect on Liver Cells in Viral Hepatitis -

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3