Practical Approaches to Apply Ultra-Thick Graphite Anode to High-Energy Lithium-Ion Battery: Carbonization and 3-Dimensionalization

Author:

Park Junsu,Suh Seokho,Tamulevičius SigitasORCID,Kim Daesoo,Choi Dongin,Jeong Sungho,Kim Hyeong-JinORCID

Abstract

Lithium-ion batteries with ultra-thick electrodes have high energy density and low manufacturing costs because of the reduction of the inactive materials in the same battery volume. However, the partial usage of the full capacity and the low rate capability are caused by poor ionic and electronic conduction. In this work, the effects of two approaches, such as electrode binder carbonization by heat treatment and 3-dimensionalization by the laser structuring of ultra-thick graphite anodes to lithium-ion batteries for high energy density, are investigated. During the heat treatment, the polyvinylidene fluoride (PVDF) binder is carbonized to form fluorinated graphitic carbons, thereby increasing the number of lithium-ion storage sites and the improvement of the electrode capacity by 14% (420 mAh g−1 and 20 mAh cm−2). Further, the carbonization improves the rate capability by 31% at 0.1 C by simultaneously reducing the ionic and electronic resistances. Furthermore, after the laser structuring of the carbonized electrode, the areal discharge capacity increases to 50% at the increasing current rates, resulting from drastically improved ionic conduction. In addition to the electrochemical characteristics, these two approaches contribute considerably to the fast wetting of the electrolyte into the ultra-thick electrode. The carbonization and laser structuring of the ultra-thick graphite anodes are practical approaches for high-energy batteries to overcome the thickness limitation.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3