A Superimposed QD-Based Optical Antenna for VLC: White LED Source

Author:

Chamani ShaghayeghORCID,Rostami AliORCID,Mirtaheri Peyman

Abstract

Visible light communication (VLC) is a versatile enabling technology for following high-speed wireless communication because of its broad unlicensed spectrum. In this perspective, white light-emitting diodes (LED) provide both illumination and data transmission simultaneously. To accomplish a VLC system, receiver antennas play a crucial role in receiving light signals and guiding them toward a photodetector to be converted into electrical signals. This paper demonstrates an optical receiver antenna based on luminescent solar concentrator (LSC) technology to exceed the conservation of etendue and reach a high signal-to-noise ratio. This optical antenna is compatible with all colors of LEDs and achieves an optical efficiency of 3.75%, which is considerably higher than the similar reported antenna. This antenna is fast due to the small attached photodetector—small enough that it can be adapted for electronic devices—which does not need any tracking system. Moreover, numerical simulation is performed using a Monte Carlo ray-tracing model, and results are extracted in the spectral domain. Finally, the fate of each photon and the chromaticity diagram of the collected photons’ spectra are specified.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3