The Effect of Annealing and Optical Radiation Treatment on Graphene Resonators

Author:

Liu YujianORCID,Li ChengORCID,Fan Shangchun,Song Xuefeng,Wan Zhen

Abstract

Graphene resonant sensors have shown strong competitiveness with respect to sensitivity and size. To advance the applications of graphene resonant sensors, the damage behaviors of graphene harmonic oscillators after thermal annealing and laser irradiation were investigated by morphology analysis and frequency domain vibration characteristics. The interface stress was proven to be the key factor that directly affected the yield of resonators. The resulting phenomenon could be improved by appropriately controlling the annealing temperature and size of resonators, thereby achieving membrane intactness of up to 96.4%. However, micro-cracks were found on the graphene sheets when continuous wave (CW) laser power was more than 4 mW. Moreover, the fluctuating light energy would also cause mechanical fatigue in addition to the photothermal effect, and the threshold damage power for the sinusoidally modulated laser was merely 2 mW. In this way, based on the amplitude-frequency surface morphology of the graphene resonator, the thermal time constant of the order of a few microseconds was confirmed to evaluate the damage of the graphene oscillator in situ and in real time, which could be further extended for those resonators using other 2D materials.

Funder

National Natural Science Foundation of China

Beijing Natural Science Foundation

Aviation Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3