Author:
Li Chengwei,Huang Kai,Yuan Tingkang,Cong Tianze,Fan Zeng,Pan Lujun
Abstract
A flexible and stretchable electrode based on polydimethylsiloxane (PDMS)-Ag nanosheet composite with low resistance and stable properties has been investigated. Under the synergistic effect of the excellent flexibility and stretchability of PDMS and the excellent electrical conductivity of Ag nanosheets, the electrode possesses a resistivity as low as 4.28 Ωm, a low resistance variation in the 0–50% strain range, a stable electrical conductivity over 1000 cycles, and a rapid recovery ability after failure caused by destructive large stretching. Moreover, the conductive mechanism of the flexible electrode during stretching is explained by combining experimental tests, theoretical models of contact point-tunneling effect, and finite element simulation. This research provides a simple and effective solution for the structure design and material selection of flexible electrodes, and an analytical method for the conductive mechanism of stretchable electrodes, which has potential for applications in flexible electronic devices, smart sensing, wearable devices, and other fields.
Funder
China Postdoctoral Science Foundation
National Natural Science Foundation of China
LiaoNing revitalization Talent Program
Subject
General Materials Science,General Chemical Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献