Enhanced Visible-Light-Driven Photocatalysis of Ag/Ag2O/ZnO Nanocomposite Heterostructures

Author:

Loka ChadrasekharORCID,Lee Kee-SunORCID

Abstract

Visible-light-driven photocatalysis is one promising and efficient approach for decontaminating pollutants. Herein, we report the combination of localized surface plasmon resonance (LSPR) and p-n heterojunction structure Ag-Ag2O-ZnO nanocomposite synthesized by a hydrothermal process for the suppression of photogenerated electron-hole pair recombination rates, the extension of the absorption edge to the visible region, and the enhancement of photocatalytic efficiency. The prepared nanocomposites were investigated by standard analytical techniques and the results revealed that the synthesized powders were comprised of Ag, Ag2O, and ZnO phases. Photocatalytic activity of the photocatalyst tested for methylene blue, methyl orange, and rhodamine B showed the highest photocatalytic degradation efficiency: 97.3%, 91.1%, and 94.8% within 60 min under visible-light irradiation. The average lifetime of the photogenerated charge carriers was increased twofold in the Ag-Ag2O-ZnO photocatalyst (~10 ns) compared to the pure ZnO (~5.2 ns). The enhanced photocatalytic activity resulted from a decrease of the charge carrier recombination rate as inferred from the steady-state and time-resolved photoluminescence investigations, and the increased photoabsorption ability. The Ag-Ag2O-ZnO photocatalyst was stable over five repeated cyclic photodegradation tests without showing any significant changes in performance. Additionally, the structure indicated a potential for application in environmental remediation. The present study showcases the robust design of highly efficient and reusable visible-light-active photocatalysts via the combination of p-n heterojunction and LSPR phenomena.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3