Computational Evaluation of Al-Decorated g-CN Nanostructures as High-Performance Hydrogen-Storage Media

Author:

Gao PengORCID,Chen XihaoORCID,Li Jiwen,Wang Yue,Liao Ya,Liao Shichang,Zhu Guangyu,Tan Yuebin,Zhai Fuqiang

Abstract

Density functional theory (DFT) calculations were employed to solve the electronic structure of aluminum (Al)-doped g-CN and further to evaluate its performance in hydrogen storage. Within our configurations, each 2 × 2 supercell of this two-dimensional material can accommodate four Al atoms, and there exist chemical bonding and partial charge transfer between pyridinic nitrogen (N) and Al atoms. The doped Al atom loses electrons and tends to be electronically positive; moreover, a local electronic field can be formed around itself, inducing the adsorbed H2 molecules to be polarized. The polarized H2 molecules were found to be adsorbed by both the N and Al atoms, giving rise to the electrostatic attractions between the H2 molecules and the Al-doped g-CN surface. We found that each 2 × 2 supercell can adsorb at most, 24 H2 molecules, and the corresponding adsorption energies ranged from −0.11 to −0.31 eV. The highest hydrogen-storage capacity of the Al-doped g-CN can reach up to 6.15 wt%, surpassing the goal of 5.50 wt% proposed by the U.S. Department of Energy. Additionally, effective adsorption sites can be easily differentiated by the electronic potential distribution map of the optimized configurations. Such a composite material has been proven to possess a high potential for hydrogen storage, and we have good reasons to expect that in the future, more advanced materials can be developed based on this unit.

Funder

Chongqing University of Arts and Sciences

Chongqing Public Service Platform

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3