Nanoparticle Sphericity Investigation of Cu-Al2O3-H2O Hybrid Nanofluid Flows between Inclined Channels Filled with a Porous Medium

Author:

You XiangchengORCID

Abstract

With the porous medium-filling inclined channels, we investigate the nanoparticle sphericity of Cu-Al2O3-H2O hybrid nanofluid flows. We consider the constant flow rate through the channels as well as the uniform heat flux on wall channels. We provide analytical solutions for both the velocity and temperature fields. Several parameters are considered in the analytical solutions, including the mixed convection variable, the Peclet number, the channel tilt angle, and nanoparticle sphericity and volume fractions. The significant findings of this study are that the effective thermal conductivity increases when increasing the temperature in the same nanoparticle volume fractions. Nanoparticles with a smaller average sphericity size have a greater specific surface area and contain a greater concentration of small particles, which enhances the internal heat transfer of nanofluids. The other noteworthy observation of this study is that when the nanoparticle volume fraction increases from 0.1 to 0.2, although the heat transfer enhancement rate has slowed down, it has also increased by about 25%. The hybrid nanofluids have suitable stability, and the enhanced heat transfer effect is better with the increase in nanoparticle compositions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference45 articles.

1. Enhancing thermal conductivity of fluids with nanoparticles;Choi;ASME Fluids Eng. Div.,1995

2. The effect of nanoparticles on reservoir wettability alteration: a critical review

3. The effect of nanoparticles on wettability alteration for enhanced oil recovery: micromodel experimental studies and CFD simulation

4. Adsorption and desorption behavior of nanoparticles on rock surfaces;Jiang;Pet. Sci. Bull.,2020

5. Evaluation and effect of mixture ratio on heat transfer performance of Al2O3/water nanofluids;Zhai;Chem. Ind. Eng. Prog.,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3