Dissipative Phase Transition in Systems with Two-Photon Drive and Nonlinear Dissipation near the Critical Point

Author:

Mylnikov Valentin Yu.ORCID,Potashin Sergey O.,Sokolovskii Grigorii S.,Averkiev Nikita S.

Abstract

In this paper, we examine dissipative phase transition (DPT) near the critical point for a system with two-photon driving and nonlinear dissipations. The proposed mean-field theory, which explicitly takes into account quantum fluctuations, allowed us to describe properly the evolutionary dynamics of the system and to demonstrate new effects in its steady-state. We show that the presence of quantum fluctuations leads to a power-law dependence of the anomalous average at the phase transition point, with which the critical exponent is associated. Also, we investigate the effect of the quantum fluctuations on the critical point renormalization and demonstrate the existence of a two-photon pump “threshold”. It is noteworthy that the obtained results are in a good agreement with the numerical simulations.

Funder

Russian Science Foundation

Ministry of Science and Higher Education of the Russian Federation under the Strategic Academic Leadership Program “Priority 2030”

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Parametrically driving a quantum oscillator into exceptionality;Scientific Reports;2023-07-07

2. Emergent Equilibrium and Quantum Criticality in Systems with Two-Photon Drive and Dissipation;2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC);2023-06-26

3. One Hundred Second Bit-Flip Time in a Two-Photon Dissipative Oscillator;PRX Quantum;2023-06-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3