Sensing Techniques for Organochlorides through Intermolecular Interaction with Bicyclic Amidines

Author:

Park Jong-WonORCID,Jang Lee-Woon,Jensen Erik C.,Stockton Amanda,Kim JungkyuORCID

Abstract

Toxic organochloride molecules are widely used in industry for various purposes. With their high volatility, the direct detection of organochlorides in environmental samples is challenging. Here, a new organochloride detection mechanism using 1,5-diazabicyclo[4.3.0]non-5-ene (DBN) is introduced to simplify a sensing method with higher detection sensitivity. Three types of organochloride compounds-trichloroethylene (TCE), dichloromethane (DCM), and dichlorodiphenyltrichloroethane (DDT)—were targeted to understand DCM conjugation chemistry by using nuclear magnetic resonance (NMR) and liquid chromatography with a mass spectrometer (LC-MS). 13C-NMR spectra and LC-MS data indicated that DBN can be labeled on these organochloride compounds by chlorine–nitrogen interaction. Furthermore, to demonstrate the organochloride sensing capability, the labeling yield and limit of detection were determined by a colorimetric assay as well as micellar electrokinetic chromatography (MEKC). The interaction with DBN was most appreciable for TCE, among other organochlorides. TCE was detected at picomolar levels, which is two orders of magnitude lower than the maximum contaminant level set by the United States Environmental Protection Agency. MEKC, in conjunction with this DBN-labeling method, enables us to develop a field-deployable sensing platform for detecting toxic organochlorides with high sensitivity.

Funder

United States Department of Energy

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3